

ESTATÍSTICA II - 2º Ano/Gestão do Desporto 2º Prova Intercalar-1º parte 14. 06. 18 1hora. (10 valores)

Nome:				Nº					
Espaço reservado para classificações									
1 a. (10)	2 a. (5).	2 d. (10)	3 (15)						
1 b. (10)	2 b.(5)	2 e. (10)							
1 c. (10)	2 c.(10)	2 f. (15)		T:					

- Atenção: 1. As folhas EXCEL no écran do computador tem os dados para a regressão e os dados para resolução da questão 3.
 - 2. Devem apresentar na folha de exame a formalização e Justificação dos cálculos efectuados no EXCEL.
 - 3. Devem fazer os cálculos no ficheiro EXCEL em folhas separadas para cada questão.
 - A quantidade de lixo, em toneladas, processada diariamente numa central de reciclagem pode ser considerada uma variável aleatória com distribuição normal com variância igual a
 A direção da central comprometeu-se a reciclar uma quantidade média de pelo menos 10 toneladas e está sujeita a uma multa pesada se não cumprir.
 - a. Formule um ensaio de hipóteses quanto ao cumprimento do compromisso da direção? Justifique a sua escolha.
 - b. Interprete os erros de 1^a e 2^a espécie.

c. Determine a região crítica e enuncie a decisão que tomaria face ao resultado obtido.

2. Considere os dados na folha EXCEL para estimar o modelo:

$$Ln(Rend_i) = \beta_0 + \beta_1 Ln(Escol_i) + \beta_2 G\acute{e}nero_i + \beta_3 EstCiv_i + \beta_4 Id_i + u_i$$

Onde: Rend - rendimento anual em euros

Escol - número de anos de escolaridade

 $G\'{e}nero$ - 1 se Homem e 0 se Mulher

EstCiv - estado civil 1 se casado 0 se outro

Id - idade

- a. Estime o modelo.
- b. Interprete o significado dos coeficientes estimados das variáveis Escol e $G\'{e}nero$.

c. Analise a qualidade global do modelo

d. Teste a hipótese H_0 : $\beta_2 \geq 0.5$ contra H_1 : $\beta_2 < 0.5$.

e. Formalize a hipótese para testar se as variáveis EstCiv.e Id contribuem para explicar o rendimento anual e realize o ensaio.

f.	Calcule o intervalo de confiança a 95% para a previsão em média do rendimento
	auferido por um individuo do sexo feminino, solteira, com 35 anos de idade e 15 anos
	de escolaridade.

3. No seu livro "Outliers" Malcolm Gladwell argumenta que a maioria dos jogadores de "baseball" americanos nasceram nos meses entre Agosto e Dezembro, porque esta é a data limite de inscrição nas ligas de "baseball" não escolares. Os registos de uma amostra de 4512 jogadores americanos da liga de "baseball" constam da tabela seguinte:

Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
387	329	366	344	336	313	313	503	421	434	398	371

Usando um nível de significância de 5% existe evidência suficiente para rejeitar a hipótese de que os jogadores americanos da liga de "baseball" nasceram nos diferentes meses do ano com igual probabilidade?